函数的使用方式
将函数视为“一等公民”
- 函数可以赋值给变量
- 函数可以作为函数的参数
- 函数可以作为函数的返回值
高阶函数的用法(filter、map以及它们的替代品)
1 2 |
items1 = list(map(lambda x: x ** 2, filter(lambda x: x % 2, range(1, 10)))) items2 = [x ** 2 for x in range(1, 10) if x % 2] |
位置参数、可变参数、关键字参数、命名关键字参数
参数的元信息(代码可读性问题)
匿名函数和内联函数的用法(lambda函数)
闭包和作用域问题
- Python搜索变量的LEGB顺序(Local –> Embedded –> Global –> Built-in)
- global和nonlocal关键字的作用
- global:声明或定义全局变量(要么直接使用现有的全局作用域的变量,要么定义一个变量放到全局作用域)。
- nonlocal:声明使用嵌套作用域的变量(嵌套作用域必须存在该变量,否则报错)。
装饰器函数(使用装饰器和取消装饰器)
例子:输出函数执行时间的装饰器。
1 2 3 4 5 6 7 8 9 10 11 |
def record_time(func): """自定义装饰函数的装饰器""" @wraps(func) def wrapper(*args, **kwargs): start = time() result = func(*args, **kwargs) print(f'{func.__name__}: {time() - start}秒') return result return wrapper |
如果装饰器不希望跟print函数耦合,可以编写带参数的装饰器。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 |
from functools import wraps from time import time def record(output): """自定义带参数的装饰器""" def decorate(func): @wraps(func) def wrapper(*args, **kwargs): start = time() result = func(*args, **kwargs) output(func.__name__, time() - start) return result return wrapper return decorate |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 |
from functools import wraps from time import time class Record(): """自定义装饰器类(通过__call__魔术方法使得对象可以当成函数调用)""" def __init__(self, output): self.output = output def __call__(self, func): @wraps(func) def wrapper(*args, **kwargs): start = time() result = func(*args, **kwargs) self.output(func.__name__, time() - start) return result return wrapper |
例子:用装饰器来实现单例模式。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 |
from functools import wraps def singleton(cls): """装饰类的装饰器""" instances = {} @wraps(cls) def wrapper(*args, **kwargs): if cls not in instances: instances[cls] = cls(*args, **kwargs) return instances[cls] return wrapper @singleton class President(): """总统(单例类)""" pass |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 |
from functools import wraps from threading import Lock def singleton(cls): """线程安全的单例装饰器""" instances = {} locker = Lock() @wraps(cls) def wrapper(*args, **kwargs): if cls not in instances: with locker: if cls not in instances: instances[cls] = cls(*args, **kwargs) return instances[cls] return wrapper |
面向对象相关知识
三大支柱:封装、继承、多态
例子:工资结算系统。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
""" 月薪结算系统 - 部门经理每月15000 程序员每小时200 销售员1800底薪加销售额5%提成 """ from abc import ABCMeta, abstractmethod class Employee(metaclass=ABCMeta): """员工(抽象类)""" def __init__(self, name): self.name = name @abstractmethod def get_salary(self): """结算月薪(抽象方法)""" pass class Manager(Employee): """部门经理""" def get_salary(self): return 15000.0 class Programmer(Employee): """程序员""" def __init__(self, name, working_hour=0): self.working_hour = working_hour super().__init__(name) def get_salary(self): return 200.0 * self.working_hour class Salesman(Employee): """销售员""" def __init__(self, name, sales=0.0): self.sales = sales super().__init__(name) def get_salary(self): return 1800.0 + self.sales * 0.05 class EmployeeFactory(): """创建员工的工厂(工厂模式 - 通过工厂实现对象使用者和对象之间的解耦合)""" @staticmethod def create(emp_type, *args, **kwargs): """创建员工""" emp_type = emp_type.upper() emp = None if emp_type == 'M': emp = Manager(*args, **kwargs) elif emp_type == 'P': emp = Programmer(*args, **kwargs) elif emp_type == 'S': emp = Salesman(*args, **kwargs) return emp def main(): """主函数""" emps = [ EmployeeFactory.create('M', '曹操'), EmployeeFactory.create('P', '荀彧', 120), EmployeeFactory.create('P', '郭嘉', 85), EmployeeFactory.create('S', '典韦', 123000), ] for emp in emps: print('%s: %.2f元' % (emp.name, emp.get_salary())) if __name__ == '__main__': main() |
类与类之间的关系
- is-a关系:继承
- has-a关系:关联 / 聚合 / 合成
- use-a关系:依赖
例子:扑克游戏。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
""" 经验:符号常量总是优于字面常量,枚举类型是定义符号常量的最佳选择 """ from enum import Enum, unique import random @unique class Suite(Enum): """花色""" SPADE, HEART, CLUB, DIAMOND = range(4) def __lt__(self, other): return self.value < other.value class Card(): """牌""" def __init__(self, suite, face): """初始化方法""" self.suite = suite self.face = face def show(self): """显示牌面""" suites = ['♠️', '♥️', '♣️', '♦️'] faces = ['', 'A', '2', '3', '4', '5', '6', '7', '8', '9', '10', 'J', 'Q', 'K'] return f'{suites[self.suite.value]} {faces[self.face]}' def __str__(self): return self.show() def __repr__(self): return self.show() class Poker(): """扑克""" def __init__(self): self.index = 0 self.cards = [Card(suite, face) for suite in Suite for face in range(1, 14)] def shuffle(self): """洗牌(随机乱序)""" random.shuffle(self.cards) self.index = 0 def deal(self): """发牌""" card = self.cards[self.index] self.index += 1 return card @property def has_more(self): return self.index < len(self.cards) class Player(): """玩家""" def __init__(self, name): self.name = name self.cards = [] def get_one(self, card): """摸一张牌""" self.cards.append(card) def sort(self, comp=lambda card: (card.suite, card.face)): """整理手上的牌""" self.cards.sort(key=comp) def main(): """主函数""" poker = Poker() poker.shuffle() players = [Player('东邪'), Player('西毒'), Player('南帝'), Player('北丐')] while poker.has_more: for player in players: player.get_one(poker.deal()) for player in players: player.sort() print(player.name, end=': ') print(player.cards) if __name__ == '__main__': main() |
对象的复制(深复制/深拷贝/深度克隆和浅复制/浅拷贝/影子克隆)
垃圾回收、循环引用和弱引用
Python使用了自动化内存管理,这种管理机制以引用计数为基础,同时也引入了标记-清除和分代收集两种机制为辅的策略。
1 2 3 4 5 6 |
typedef struct_object { /* 引用计数 */ int ob_refcnt; /* 对象指针 */ struct_typeobject *ob_type; } PyObject; |
1 2 3 4 5 6 7 8 |
/* 增加引用计数的宏定义 */ #define Py_INCREF(op) ((op)->ob_refcnt++) /* 减少引用计数的宏定义 */ #define Py_DECREF(op) \ //减少计数 if (--(op)->ob_refcnt != 0) \ ; \ else \ __Py_Dealloc((PyObject *)(op)) |
导致引用计数+1的情况:
- 对象被创建,例如a = 23
- 对象被引用,例如b = a
- 对象被作为参数,传入到一个函数中,例如f(a)
- 对象作为一个元素,存储在容器中,例如list1 = [a, a]
导致引用计数-1的情况:
- 对象的别名被显式销毁,例如del a
- 对象的别名被赋予新的对象,例如a = 24
- 一个对象离开它的作用域,例如f函数执行完毕时,f函数中的局部变量(全局变量不会)
- 对象所在的容器被销毁,或从容器中删除对象
引用计数可能会导致循环引用问题,而循环引用会导致内存泄露,如下面的代码所示。为了解决这个问题,Python中引入了“标记-清除”和“分代收集”。在创建一个对象的时候,对象被放在第一代中,如果在第一代的垃圾检查中对象存活了下来,该对象就会被放到第二代中,同理在第二代的垃圾检查中对象存活下来,该对象就会被放到第三代中。
# 循环引用会导致内存泄露 - Python除了引用技术还引入了标记清理和分代回收
# 在Python 3.6以前如果重写__del__魔术方法会导致循环引用处理失效
# 如果不想造成循环引用可以使用弱引用
list1 = []
list2 = []
list1.append(list2)
list2.append(list1)
以下情况会导致垃圾回收:
- 调用gc.collect()
- gc模块的计数器达到阀值
- 程序退出
如果循环引用中两个对象都定义了__del__方法,gc模块不会销毁这些不可达对象,因为gc模块不知道应该先调用哪个对象的__del__方法,这个问题在Python 3.6中得到了解决。
也可以通过weakref模块构造弱引用的方式来解决循环引用的问题。
魔法属性和方法(请参考《Python魔法方法指南》)
有几个小问题请大家思考:
- 自定义的对象能不能使用运算符做运算?
- 自定义的对象能不能放到set中?能去重吗?
- 自定义的对象能不能作为dict的键?
- 自定义的对象能不能使用上下文语法?
混入(Mixin)
例子:自定义字典限制只有在指定的key不存在时才能在字典中设置键值对。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 |
class SetOnceMappingMixin: """自定义混入类""" __slots__ = () def __setitem__(self, key, value): if key in self: raise KeyError(str(key) + ' already set') return super().__setitem__(key, value) class SetOnceDict(SetOnceMappingMixin, dict): """自定义字典""" pass my_dict= SetOnceDict() try: my_dict['username'] = 'jackfrued' my_dict['username'] = 'hellokitty' except KeyError: pass print(my_dict) |
元编程和元类
例子:用元类实现单例模式。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 |
import threading class SingletonMeta(type): """自定义元类""" def __init__(cls, *args, **kwargs): cls.__instance = None cls.__lock = threading.Lock() super().__init__(*args, **kwargs) def __call__(cls, *args, **kwargs): if cls.__instance is None: with cls.__lock: if cls.__instance is None: cls.__instance = super().__call__(*args, **kwargs) return cls.__instance class President(metaclass=SingletonMeta): """总统(单例类)""" pass |
面向对象设计原则
- 单一职责原则 (SRP)- 一个类只做该做的事情(类的设计要高内聚)
- 开闭原则 (OCP)- 软件实体应该对扩展开发对修改关闭
- 依赖倒转原则(DIP)- 面向抽象编程(在弱类型语言中已经被弱化)
- 里氏替换原则(LSP) – 任何时候可以用子类对象替换掉父类对象
- 接口隔离原则(ISP)- 接口要小而专不要大而全(Python中没有接口的概念)
- 合成聚合复用原则(CARP) – 优先使用强关联关系而不是继承关系复用代码
- 最少知识原则(迪米特法则,LoD)- 不要给没有必然联系的对象发消息
- 说明:上面加粗的字母放在一起称为面向对象的SOLID原则。
GoF设计模式
- 创建型模式:单例、工厂、建造者、原型
- 结构型模式:适配器、门面(外观)、代理
- 行为型模式:迭代器、观察者、状态、策略
例子:可插拔的哈希算法。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 |
class StreamHasher(): """哈希摘要生成器(策略模式)""" def __init__(self, alg='md5', size=4096): self.size = size alg = alg.lower() self.hasher = getattr(__import__('hashlib'), alg.lower())() def __call__(self, stream): return self.to_digest(stream) def to_digest(self, stream): """生成十六进制形式的摘要""" for buf in iter(lambda: stream.read(self.size), b''): self.hasher.update(buf) return self.hasher.hexdigest() def main(): """主函数""" hasher1 = StreamHasher() with open('Python-3.7.1.tgz', 'rb') as stream: print(hasher1.to_digest(stream)) hasher2 = StreamHasher('sha1') with open('Python-3.7.1.tgz', 'rb') as stream: print(hasher2(stream)) if __name__ == '__main__': main() |
本文来自这个系列长期转载Python-100-Days ,本文观点不代表蓝洛水深立场,转载请联系原作者。