Python自学Day64 并发下载

多线程和多进程补充知识点

threading.local类

使用线程时最不愿意遇到的情况就是多个线程竞争资源,在这种情况下为了保证资源状态的正确性,我们可能需要对资源进行加锁保护的处理,这一方面会导致程序失去并发性,另外如果多个线程竞争多个资源时,还有可能因为加锁方式的不当导致死锁。要解决多个线程竞争资源的问题,其中一个方案就是让每个线程都持有资源的副本(拷贝),这样每个线程可以操作自己所持有的资源,从而规避对资源的竞争。

要实现将资源和持有资源的线程进行绑定的操作,最简单的做法就是使用threading模块的local类,在网络爬虫开发中,就可以使用local类为每个线程绑定一个MySQL数据库连接或Redis客户端对象,这样通过线程可以直接获得这些资源,既解决了资源竞争的问题,又避免了在函数和方法调用时传递这些资源。具体的请参考本章多线程爬取“手机搜狐网”(Redis版)的实例代码。

concurrent.futures模块

Python3.2带来了concurrent.futures 模块,这个模块包含了线程池和进程池、管理并行编程任务、处理非确定性的执行流程、进程/线程同步等功能。关于这部分的内容推荐大家阅读《Python并行编程》。

分布式进程

使用多进程的时候,可以将进程部署在多个主机节点上,Python的multiprocessing模块不但支持多进程,其中managers子模块还支持把多进程部署到多个节点上。当然,要部署分布式进程,首先需要一个服务进程作为调度者,进程之间通过网络进行通信来实现对进程的控制和调度,由于managers模块已经对这些做出了很好的封装,因此在无需了解网络通信细节的前提下,就可以编写分布式多进程应用。具体的请参照本章分布式多进程爬取“手机搜狐网”的实例代码。

协程和异步I/O

协程的概念

协程(coroutine)通常又称之为微线程或纤程,它是相互协作的一组子程序(函数)。所谓相互协作指的是在执行函数A时,可以随时中断去执行函数B,然后又中断继续执行函数A。注意,这一过程并不是函数调用(因为没有调用语句),整个过程看似像多线程,然而协程只有一个线程执行。协程通过yield关键字和 send()操作来转移执行权,协程之间不是调用者与被调用者的关系。

协程的优势在于以下两点:

执行效率极高,因为子程序(函数)切换不是线程切换,由程序自身控制,没有切换线程的开销。

不需要多线程的锁机制,因为只有一个线程,也不存在竞争资源的问题,当然也就不需要对资源加锁保护,因此执行效率高很多。

说明:协程适合处理的是I/O密集型任务,处理CPU密集型任务并不是它擅长的,如果要提升CPU的利用率可以考虑“多进程+多线程”或者“多进程+协程”的工作模式。

历史回顾

  • Python 2.2:第一次提出了生成器(最初称之为迭代器)的概念(PEP 255)。
  • Python 2.5:引入了将对象发送回暂停了的生成器这一特性即生成器的send()方法(PEP 342)。
  • Python 3.3:添加了yield from特性,允许从迭代器中返回任何值(注意生成器本身也是迭代器),这样我们就可以串联生成器并且重构出更好的生成器。
  • Python 3.4:引入asyncio.coroutine装饰器用来标记作为协程的函数,协程函数和asyncio及其事件循环一起使用,来实现异步I/O操作。
  • Python 3.5:引入了async和await,可以使用async def来定义一个协程函数,这个函数中不能包含任何形式的yield语句,但是可以使用return或await从协程中返回值。
  • 协程实现了协作式并发,通过提高CPU的利用率来达到改善性能的目的。著名的三方库aiohttp就是通过协程的方式实现了HTTP客户端和HTTP服务器的功能,较之requests有更好的获取数据的性能,有兴趣可以阅读它的官方文档。

实例 – 多线程爬取“手机搜狐网”所有页面

下面我们把之间讲的所有知识结合起来,用面向对象的方式实现一个爬取“手机搜狐网”的多线程爬虫。

本文来自这个系列长期转载Python-100-Days ,本文观点不代表蓝洛水深立场,转载请联系原作者。

Like (0)
蓝洛水深的头像蓝洛水深管理员
Previous 2021年2月5日 上午12:06
Next 2021年2月6日 下午8:36

相关推荐

发表回复

Please Login to Comment
联系QQ
联系QQ
SHARE
TOP